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The principles and the generalized equation of chemical algebra is extended to a
Minkowskian substrate E endowed with its improper non-definite-positive metric, where the
non-compact 6-parameter group G of the Lorentz transformations operates. Given a map
tuu(g) = p{gu)m(g) on G, a “line element” ds? is formulated at each point marked by a vector
u. Assuming “p = 1" and “m(g) # 0 = g is a pure Lorentz transformation (without a spatial
rotation)”, the isotropic hypothesis (m depends on a single parameter out of three in G) is first
studied. In general, ds® does not define a Riemannian manifold unless one additional condition
on m is imposed. Several relationships are established which are useful for the calculation of
the metric tensor and the curvature tensor.

1. Introduction

The more general starting material of the propositions of chemical algebra estab-
lished hitherto is a “‘substrate”, i.e. a metric space endowed with a group of iso-
metric transformations. Our attempt to apply chemical algebra to the classical
Euclidean space has led to a remarkably concise formulation of a ds? as the exact
second logarithmic differential of a scalar “wave function™ associated to a
Schrodinger-type equation [1]. In the sequel, the study of the space-time of relativ-
ity is launched. This space-time is not represented by a metric space in the classical
sense: the improper ‘‘distance’ between two distinct events is not necessarily posi-
tive nor different from zero. In other words, the underlying bilinear form of R* is
not definite-positive. The first task is to find out how to formulate the definition of
a pairing product on such a space. Then, by analogy with our previous treatment
[1], we shall consider some group acting isometrically in R*, and transitively in one
part of the projective space P(R*) (contrary to translations which are not linear,
the consideration of the projective space is needed for linear groups cannot act tran-
sitively in R*: {0} is an orbit).
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266 R. Chauvin/ Chemical algebra. VII

It is already obvious that spatial rotations are not sufficient. In addition, this
group must correspond to “physical motions”. From a relativistic viewpoint, the
displacement of the set trihedron + clock can merely be performed with a finite
velocity v with respect to its initial situation (Jv|<c), and brings about a slowing
down of the clock. This slowing down is correlated to v and the admissible transfor-
mations constitute the Lorentz group. The present report deals with the formula-
tion of the chemical algebra on the Minkowski space, whose metric is defined by the
pseudonorm ds? = c2df* — dx* — dy* — dz? and with the Lorentz group as an iso-
metry group which acts transitively inside the projective light cone (c*#2 — Irl2 >0).
Although the process is only mathematical in nature, the terminology of physics
(““space”, “time”, “velocity”, etc.) is used for the sake of brevity. In order to clarify
the process, the layout of this article is summarized below:

2. Generalized equation for improper metric substrates.

2.1. Expression of the pairing product K, (u, u + du).

2.2. General expression of ds?.

3. Minkowskian substrate.

3.1. Action of the restricted Lorentz group.

3.2. Integrals on the Lorentz group.

3.3. Forms of the weighting map piy u.

3.4. Formulation of G-weighted metrics on a Minkowskian substrate.
4. Isotropic ds* for the Lorentz group.

4.1. K,-derived integrals.

4.2, &-derived integrals.

4.3. Riemannian condition.

4.4, Local coordinate system.

4.5. Curvature tensor.

4.6. Isotropic ds® on a two-dimensional Minkowskian substrate.
4.7. Non-Riemannian G-weighted metrics.

5. Case of the whole Lorentz group (including spatial rotations).
6. Conclusion

2. Generalized equation for improper metric substrates
2.1. EXPRESSION OF THE PAIRING PRODUCT K, (u,u + du)
If (E, d) is a metric space, then,
p 42 d P
i Huy(g)exp| 7 (gu,u)| dg - Hu (g)exp| 5 d"(gv,v)| dg

| e exp[ 5 ew,v)] de- [ pun(e)exp[-5dev,w)] dg

Kl (u,v) =
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If E is a real vector space and if d is the Euclidean distance derived from a definite-
positive symmetric bilinear form, this definition also reads

/ hu(g) explp(zulu)) dg - / ia(2) explp(gvIv)] de

G G .

/ pun(g) explp(gulv)) dg - / ra(g) explp(gv]u)] dg
G G

This definition can be naturally retained for any symmetric bilinear form. The corre-
sponding map d(u,v) = y/(u — vju — v) e C is no longer a distance, but is relevant
in the definition of pseudo-Euclidean spaces (e.g. the Minkowski space).

K7 (u,v) =

Remark

An alternative generalization of the definition used hitherto for proper Eucli-
dean spaces could call for the modulus of the exponential terms occurring in the
integrands instead of the “‘nacked’” exponentials, that is for exp[p Re(gu|u)] instead
of exp[p(gu|u)]. Indeed, the former expression afforded a suitable definition equa-
tion on Hermitean complex vector spaces [2]. Nevertheless, the vector space sub-
strates to be considered below are real, and the more direct generalization is
considered a priori.

2.2. GENERAL EXPRESSION OF ds?.

From the pairing product K,(u, v), a general equation (E) for the definition of
adistance D, (u, v) has been devised

Puv(Dp(u,v)) = Kp(u,v), (E)

where &, y(x) is one numerical map which has been formulated on the basis of a
set of consistency requirements [3].

If G is a finite group, eq. (E) can be applied to any pair of vectors u and v of a
connected part in a vector space E (called ““substrate”) leading to a G-weighted dis-
tance extension D,(u, v) on E (if the weighting map p,v(g) is constant, D, is a com-
pletely G-invariant distance extension on E/G) [4]. Alternatively, (E) can be first
applied to infinitely close vectors w and w + dw leading to a G-weighted metric ds*
at each point w: the minimum integral of ds along all possible pathways joining u
and v (if it exists) leads to another distance L,(u,v). When G is a non-compact
group such that D,(u,v) = oo if u # v, the value D,(u,u) = 0 still holds. Thus,
when v = u + du, the crude equation has been extended in order to define relevant
values of ds* = DZ(u,u+ du) “somewhere between zero and infinity” [5]. If
v = u + du, the expression of the pairing product can be simplified very generally.
A somewhat tedious calculation leads to

Kp(u,u+du) ~ 1 +§{de +’I—’(1 - d’L — dJdJ')},

where
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I= / tu,u(g) - €Xp [—-gllgu - uﬂ dg,
G
K = [ unle)- (eduldu) - exp[~F gu - wl?] de,
27 _ P 2
&L= | huale) - (guldn) - (gdulu) - exp[~F lgu - ] de,
a7 = | oa(e) - (guldw) - exp[ - cw — ]

@' = [ oale) - (gdulu) - exp[ % lw — ul’] de
G

(the notations “‘d”’ and “d?” denote formal differential forms: in rigorous notations
used in ref. [5], K, (u, u + du) = 1 + 1d°K).
Itis already evident that dJ = dJ' assoon as piy u(g) = puu(g™!) over G.

3. G-weighted metrics of the Lorentz group on a Minkowskian substrate
3.1. ACTION OF THE LORENTZ GROUP

Whereas the group of translations in R3 is a 3-parameter group, the restricted
Lorentz group is a 6-parameter group, but a Lorentz transformation which does
not involve a spatial rotation is characterized by three numbers v (or 8 = v/c), 0
and ¢. These numbers define the modulus and the direction of the relative velocity v
of two trihedron-clock systems: 0< <1, 0<f<m, 0< <27 In a more abstract
way, these transformations are “hyperbolic rotations” in the Minkowski space
with one plane containing the time axis. It is to be verified that if (x, y, z, cf) is a
4-vectorandif (x',y, 7, ct') = g(x,y,z, ct), then,

x" =[1+ (y—1)sin*fcos® ]x + (v — 1) sin? fsin pcos ¢ y
+ (y—1)sinfcosfcos ¢z — ysinfcos ¢f ct,

(y—1)sin®@sinpcos px + [1 + (v — 1)sin29sin2¢]y
+ (y—1)sinfcosfsingz — ysinfsing § ct,

y

Z =(y—1)sinfcosfcospx+ (y—1)sinfcosfsingy
+[1+ (y—1)cos?8]z — ycos§ B et;
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ct = —ysinfcospBx —ysinfsing By — ycosh Bz + vyct,

where: 8 = v/candy = [1 — g7/
On the other hand, a short calculation leads to

llgu — ul®> = 2(1 — )[(ct)* — (sinfcos ¢ x + sinfsin ¢ y + cos )],

where g is a Lorentz transformation (characterized by a vector v), u = (x, y, z, ct)
is a4-vector, and || - || denotes the pseudonorm of the Minkowski space.

Remark 1

It cannot be overemphasized that in the above formulae, g denotes a pure Lor-
entz transformation without a component of spatial rotation. Any element of the
Lorentz group is written gk, where k is a pure spatial rotation. Nevertheless, this

general writing will be inessential in the sequel, for it will be supposed that
puu(gk) # Oonlyifk = e.

Remark 2
The above squared ““distance” between gu and u can be complex or real, positive
or negative. Itis real (like y) assoonasv<c.

Remark 3
Contrary to the case of translations in the Euclidean space where ||gu — u]|? did
not depend on u, ||gu — ul|* now depends on both gand u.

Remark 4
When v<<c,i.e. when §—0, then,
llgu — ulf® = 2(1 — ) (ct)* = z<—% :2—2) AP~ —(vt)?,

i.e. |lgu — ul* > — (vt)%: we find again the expression of |jgu — u||* (except the
sign minus, as expected) for the Euclidean space where Lorentz transformations
are replaced by translations g characterized a vector vt.

Remark 5

The Lorentz group (Lie group of dimension 6) does not act transitively in the
projective space P(R*) (there are two orbits of lines), but it acts transitively in the
orbit corresponding to the interior of the light cone (¢2£2 — |r|* >0). In the sequel, u
denotes the coordinates of any point inside this region.

3.2. INTEGRALS ON THE LORENTZ GROUP

On the very outset, the measure dg serving to define ds? is identified with a vol-
ume element in the velocity space time the Haar measure of the group of spatial
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rotations dk = 1/87? sin 8 da'df'dy (where o/, 3, v are Euler’s angles). The rela-
tivistic velocity space is endowed with the metric (in spherical coordinates):

di? = y*dv? + y2d6* + P sin® 0dg? .

The volume element of this space is proportional to the square root of the modulus
of the (diagonal) tensor matrix time dvdfd¢. Thus, taking the proportionality fac-
tor equal to 3/4nc® (in order to normalize the volume of the ‘“‘sphere” of physical
velocities: v<¢),

3

T 473

dg \/ A4 - 4202 - 422 sin’ 0 dvdfdp dk = % +* B2 sin 6 dBd6d ¢ d .

From a set-theoretic standpoint, the Lorentz group is regarded as a part of R® (6-
parameter group). The integral symbol [, ...dg sweeps all the possible directions
of the velocity v (0<f<7, 0<¢<2n) and all the possible Euler’s angles
0<a' <27, 0< 4 <7, 0< v <27). Regarding the modulus of v, G might gather all
the possible values from 0 to +oo instead of being restricted to physical velocities,
i.e. to 0 <v < c (the composition of two operations v and v’ such that v<c, v <cis
an operation v” such that v <¢). Whereas the domain 0< 3 <oco makes G operate
in the complexified vector space of E (a real event can be transformed into a non-
real one), the domain 0 </ <1 ensures that G operates inside the real vector space E
(and inside the light cone). The latter restriction reflects the requirement that if u
is an event (with real space and time coordinates), gu is an event as well, for yis then
real.

Finally, it is to be reminded that Gis not compact:

1 2w 2 b3 ’ , . , 3 2 Ld ¢ .
dg = —— i dvy - —— 2 si
/G g 82 J, /0 /o sin 3 da’ d3' dv 47rc3/0 /0 -/0 v v® sin 8

1
x dvdfd¢ = 1.3/0 (—1%6;2—)2&"5:4‘00-

3.3. FORM OF THE WEIGHTING MAP py 4

At the outset, it has been supposed that, apart from the algebraic datum of an
action of G onto E, no quantitative link is presupposed between G and E. Therefore,
tuu should have the form py o(g) = m(g)u(gu), where m and p are independent
weighting functions of G and E, respectively. In our search for G-weighted metrics
on the Euclidean space where G is the group of translations, it has been assumed
that m = 1. Here, although it might be interesting, the same assumption does not
seem to allow for straightforward simplifications [6]. In the sequel, we are first con-
cerned with the symmetric assumption u = 1. The latter hypothesis has been the
starting motivation for generalizing the definition equation of completely G-
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invariant distances to the definition equation of G-weighted distances, the two defi-
nitions meeting when pyy = 1. The map pyu = mcan be regarded as the character-
istic function of a fuzzy subset of the Lorentz group [4,7]. From now onwards and
until section 5, it is assumed that:

tuu(g) # 0 only if g is a Lorentz transformation,
1.e. if no spatial rotation is involved.

In other words, the integral domains can be restricted to only three parameters
out of six: v, § and ¢. This hypothesis allows us for keeping one strong analogy with
the case of the 3-parameter group of translations in the 3D-Euclidean space (rota-
tions were not considered either). This analogy might be interesting owing to the
finding that the metric ds? was completely determined by a solution of the Schré-
dinger operator (‘““wave function™).

3.4. FORMULATION OF G-WEIGHTED METRICS ON A MINKOWSKIAN SUBSTRATE

When v is real (i.e. when v<c), then 1 — 7<0 Since ||gu — u|] =2(1 _,y)

x[(ct)* — (sinBcos ¢ x + sinfsin ¢ y + cos 6 z)?], the real terms —(p/2)|lgu — u||*in
the exponentials are negative if and only if p <0 for r<ct and p>0 for r>ct: this
is a necessary condition to get convergent integrals with standard maps p, 4 (e.8.
tuu = 1). Possible interpretations of p will be discussed later, but the condition
p <0seems to be required inside the light cone (along the time axis), while the oppo-
site condition (p >0, which has been hitherto required for standard distances and
Euclidean metrics) would have been required outside the light cone.

Given a time coordinate x° = ¢t and three orthogonal spatial coordinates
x!' = x, x> =y, x} = z, a Lorentz transformation g (without a spatial rotation) in
this coordinate system is given by a 4,4-matrix M(g) = (a (g))oslss the coefficients

a; are given by the above relationships x" = 3°" a(g)x/ (the a"s depend on the
parameters of g, namely: v, § and ¢). gactsasa coordmate transformatlon and
M(g) is a symmetric matrix, i.e.: a; = = a]. Since a( ) = 6x"/<’9x1 {x'} and {x"}
denote the coordinates of one contravarzant 4- Vector in two ‘rectangular coordi-

nate systcms Assuming the definitions xg = x°, x; = —x!, x; = —x2, x3 = —x°
andxf=x" x| =—x", x4 =-x? x4} =—-x" {x} and {xﬁ.} denote the COOI‘dl-

nates of one covariant vector. Indeed, the covariant set of equations
{x" = ai(g)x’}, namely,

X" = ad(g)x® + b ()",

x8 = ag(g)xO + ag(g)xo‘

can be written as
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Xy = ag(g)xo — a§(g)Xa,

—x'y = ag(g)xo — aj(g)xa -

By changing the group parameter 3 for —ﬂ to get al(g™!) from a! j t(g), it is verified
that af(g) = a)(g™!), —al(g) = dd(¢7"), a5 () = ﬁ(g“‘) af(g) = aj(g™"). Thus,
x! =al(g7")x;. Since a)(g™!) = x//8x", {x;} transforms as a covariant vector
under the Lorentz transformation g of the reference contravariant coordinates.

Thus, we calculate the “inner products’:

(gduldu) = dx"dx; = dx"dx® — dx"dx' — dx"?dx* — dxdx® = a;(g)dx'dx’
(gujdu) = x'dx' = x"dx® — x"dx! — x"dx* — x"dx® = a;(g)x’/dx’,

(gduju) = dx'x' = dx"x° — dx"'x' — dx"*x* — dx"x® = a;(g)x'dx/
where ag; = aj anda,; = ——aj ,o = 1,2 3. Thus,

—[1+ (y—1)sin?fcos? ¢| —[(y— 1)sin’@sindcos¢] —[(y—1)sinfcosfcosd] ~sinbcosapf

~[(y~1)sin? 8sinpcos¢] —[1 + (y—1)sin?Gsin®¢] —[(y—1)sinfcosfsing] ~ysinfsings

—[(v~1)sinfcosfcosg] —[(y—1)sinfcosfsing) ~[1 +(y—1)cos*4) ycos8f
—~sinfcos ¢ —~sinfsin ¢f —ycosbf ¥

(ay) =

Indeed, the starting coordinates x* (but not necessarily the x s if 3> 1) are real. If
we put

Iy = [ as(e)a(e) exp - lgu - ulf] de,
G

and

Ly = [ punlan(z)aye) xp -2 gw - ] de,
then,
d*K = Lydx'dx
dJ = Iyxldx', dJ' = Ijxdx) and thus dJdJ' = Iplpddxdx/

d?L = Lyix*x dx'dx’ .
It follows that

K,(u,u+ du) ~1 +2 {I,jdx'dx’ 1(1 Lugtxldx'dx’ — Il dddx!) |

I

1+ 2 {1+ 20 Ly - Tady) o fadan)
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Contrary to the group of translations in R”, the Lorentz group G acts linearly in
R*. The formula

B urdu(dsy) = 1 + pB*(u, du)ds?

can be used to formulate the basic equation (E) serving to define a G-weighted
metric ds? from K, (u, u + du) [4]. For a real bilinear form, B2 is given by

! l4u|*

[/G'U‘u,u(g) dgr ”duuz )
where

dU = /G pE . (g)(gdu) dg .

In conclusion,

B*(u,du) =

ds* = T2 2{[ I+ p(I - Ly — Iy - I)x*x' }dx'dx/

where B? stands for B2(u, du).
It is noteworthy, that if 4 = 1, then B?> = 0 and no definition of ds? is obtained
from (E) (instead of ds® we might get a formal definition of ds*).

4. Isotropic ds* of the Lorentz group

The title term means that if g is a Lorentz transformation defined by v, 6, ¢, the
membership degree of g to the considered fuzzy subgroup is independent of the
direction of the velocity v, i.e. of both § and ¢. Thus, we may write m(g) = m(v).

4.1. K,-DERIVED INTEGRALS: J, I;; and Ly,

e Calculationof I = / m(v) exp {—gllgu - u||2] dg

2
4m:3 / /m v) explp(y — 1){(ct)* — (sinfcos ¢ x + sin fsin g y

+ cos 02) V' sinfdvdode .

Let kg& = (ct) — (sinfcos¢x + sinfsingy + cosfz)* = (ct)’— (r-v/v)?
= r? cos?(ny, r) where ny is the unit vector normal to the sphere or radius 1
and parallel to v (k does not vary with the modulus v). If we put
I =3 [} m(cB)L,(B)B** d, the integral I, on (6, ¢) reads
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1 2 T :
I, = ar ), /0 explp(y — 1)k(8, ¢)] sin 0 dO d¢
= z-explp(y — 1)(et)) / / exp[—p(y — 1)r* cos(ny, 1)) dS.
g

The integral over the whole sphere S° does not depend on the direction of r (I and
I, are ““scalar tensors” for linear Lorentz transformations). It is calculated for r
along the z-axis (x = y = 0and z = r), for then (ny,r) = 6:

I, = -l—exp[p('y — 1)(et)?] /7r exp[—p(y — 1)r* cos? §] sin 0 db
2 0

1
— explp(y — 1)(ct)) /0 expl—p(y — 1)) du

Therefore,

1 1
I = 3explp(y — 1)(ct)] /o /O m(cB) expl—p(y — 1)P)5" df du.

2r  pw 1
e Calculationof [;; = 4—3- / / / m(cB)ay(g) explpk (6, $) (v — 1)]y*#*sin b
xdBdfdg,and  "T/0 Jo Jo

2
Ly = / / / m(cB)au(g)ay(g) explpk(8, 8) (v — 1)|7*B* sin§ 3 db dg

Contrary to I, these integrals are not scalar tensors: whereas k(6, ¢) = (ct)?
—r? cos?(ny, r) depends on both (6, ¢) and u, the coefficients a;(g) or ax(g)ay(g) do
not depend on u but depend explicitly on (6, ¢). Changing the integrand variable
n, for the unit vector along the r-axis does not lead to an obvious simplification.

4.2. THE ¢-DERIVED INTEGRALS

1 2
e Calculation of B(u,du) = il
[Jo Huulg) dgl” ||dull
The vector dU = [, m*(v)(gdu) dg can be refered to as its components in contra-

variant notations:
dU' = / (v ) g)dx’/)dg = / m? (g )dg - dx’ .

It is easily verified that all non-diagonal terms [, m*(v)a ( )dg (w1th i # j) vanish.
Consequently, dU’ = A4;dx’ (no summation on i) with A = [.m*(v)ai(g) dg (no
contraction on ). It is easily verified that

Aaz_cl_3/ (y+2mP(wy*Pdv for a=1,2,3.
0
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And
3 (¢ 2\ 42
Ao=— [ ym*(v)y' v dv.
¢ Jo
In conclusion,

U = 43(dx")* — A2{(dx")* + (dx*)* + (dx°)}
and

A2 + (43 Az)(dxo/lldUH)
[/ m(v) dg]

4.3. RIEMANNIAN CONDITION

B*(u,du) =

In order that B?(u, du) do not depend on du, it is necessary that 42 = 42, i.e.

1

1
| - vmiearigras =0 or [ y+ iimieantst s 0.
0

Then,

S - gy

where f(3) can be any function satisfying fol f(B)dB=0(B8=v/c). If f is bound
to be real-valued, it assumes both positive and negative values: thus f!/2(3) and
hence m(cf3) assume both real and imaginary values.

It should be remarked that the first case exhibits a singularity at v = 1, i.e. at
B3 = 0. On the contrary, the pole v = —1/2 of the second expression is not attained
in the integration domain to be considered (0 <4< 1).

From the datum of m(cf3), the other integrals serving to define ds® have to be cal-
culated, to wit: fG tuu(g) dg, Ax = Ao, Lij and Lyy;. These are, perhaps, neither all
real nor all pure imaginary, and the equation would define a non-real metric ds?,
evenifuand u + dumark “real events”.

The condition fol f(B)dp = 0serving to define a Riemannian G-weighted metric
from the map

-2 S

is equivalent to f(8) = fo B) dj3, where F is now any integrable map on
[0,1].
For instance, if F(8) = 8, thenf(8) = 8 — L If F(8) = v, thenf(B8) = v — n/2.
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Assuming that the corresponding integrals [.m(g)dg, A, = Ao, L;j and Ly
are convergent, the resulting coefficients g;; of ds* are certainly not all real. Separat-
ing the real and the imaginary parts of ds*, the equation furnishes two Riemanian
metrics, namely Re(ds?) and Im(ds?), on the same Minkowskian substrate.

In fact, many simple functions m(c3) can be found fullfilling the condition
(40)* = (4a)%, and it seems arbitrary to select a “natural” one. Nevertheless, the
general process of calculation can be resumed as follows.

4.4. USE OF A LOCAL COORDINATE SYSTEM FOR ISOTROPIC RIEMANNIAN
G-WEIGHTED METRICS

One decides to calculate ds* at one point u on the z-axis: x =y = 0, z = r>0.
Since the angle ¢ does not appear in the exponential term (||gu — ul* = 2(1
—)[(ct)* = cos? §]), the integrals defining ds® are much simplified. This study
does not entail a loss of generality: indeed, the metric is here supposed to be isotro-
pic, and this choice boils down to selecting a local spatial coordinate system
(x,y,z) with the z axis passing through the point M apart from the origin by a dis-
tance r (the x, y axes span a plane which is parallel to the tangent plane to the sphere
of radius r at M). Thus,

I?'BzdSz = {I . I,'j +p(1 . L,33j — Ii313j)22 +p(1 . L,‘()oj — Iioloj)(xo)z

+p(1 . L,’30j —_ i310j +1I- Li03j —_ I,~013j)zx0}dx"dxj.

It is to be verified that

[; #0 & i=},

Li33j # 0 Nid i =j:

Liggj #0 &  i=],

Lz #0 <& (i=3andj =0)or(i = 0andj = 3). Thus, Lj; = 0.
Li03j % 0 « (l =3 andj = 0) or (l = O&de = 3) Thus, Ly = 0.
Consequently,

ds* = gOOCZdIf2 + gndxz + gzzdy2 -+ g33d22 + 2gp3cdtdz
where

I*B*goo = I - Ino + pI - Lossoz® + p(I - Loooo — I3)(c2)?,
I’B’gy3 = I-Iy3 + p(I - L3333 — I5)2* + pI - Lyges(ct)’,
I’B*g); =11y +pl - Lizs 22 + pI - Ly (ct)?,
IPB’gy = I - Iy + pI - L3z + pI - Logea(ct)?,

I*Bgo3 = plI - (Lozos + Looas) — oo - I3)(ct)z,
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I= %/OW/OI m(cf) explp(y — 1)((ct)* — r* cos? 6)] 82" dBsin 6 d6

1 1
=3 [ [ micB)explpty = (et ~ g dBs.
1 1
ho=3 [ [ - m(ca)explpty = 1)((e0® — Pi)eRy* dpau,

1 1
B = 3/0 /0 ~[1+ (v = )] - m(cB) explp(y — 1)((ct)* — )| B>y dB du,

Ly =1

1 pl
:3/0 -/0 —|:1 +%(’7_ (1 - uz) -m(cB) explp(vy — 1)((6’1‘)2 _ rzuz)]
X ﬁz,y4 dBdu=—1I _.%(100 + 1),

Lo330 = L3oos = —Lo3o3

1 rl
=3/0 /0 —*B% - m(cf) explp(y — 1)((c1)? — )| B>y dBdu,
1 opl
Loooo = 3/0 /0 +* - m(cB) exp[p(y — 1)((et)? — )| dBdu,

Lisss =3 / / 1+ (7 = 1) - m(cB) explp(y—1)((ct)*—Pu)|B* dB du,
Li33 =Lz
_3 / / v — 1)%2(1 = 12) - m(cB) explp(v — 1)((ct)? — )]

x B*y*dBdu = = (I — Lyz33 — Loszo),

B

Ligo1 = Laooz
1,
- 3/0 /o _%72(1 — 1) - m(cB) explp(y — 1)((ct)” — ru)]

x B2y dBdu = %(1 — Loooo — Loz3o)
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1 1
Loozs =3 /O [) ol + (v = 1] - mi(cB)

x explp(y — 1)((ct)* — P?)| 6>y dB du
= —I — 33 — Ipo + Lo3zo -
Six fundamental integrals are therefore to be calculated: I, Iy, 33, Loooo, L3333,

Los30.

4.5. CURVATURE TENSOR

Given an isotropic Riemannian G-weighted metric ds* = g;dx'dx/, it is natural
to seek for the expression of the curvature tensor

_dry, ary,
Oxk  Oxh
where I'}/; denotes the natural affine connection, i.e. the Christoffel symbols of

the second kind: 'k = g¥ T
Calculation of the Christoffel symbols of the first kind

o = L [08k  Ogn 08
T2 oxh Tk T o

passes through the calculation of the first partial derivatives of the gy:

+ Toi L™ — Toh ™

0gij 0 1
S - [Iz B2 {1 - Ij +p(I - Lyeyy — I - Ib)ﬂ‘xl}J

oxm~ Oxr
_ L8y | [0Lay/T) _, 8Uy/D) _,  8Uu/])
'BZ[ e TP Tl g i g | X
Ligmj | Limkj  Lix Inj  Iim Ity
+P(——I+1 rToT )%

For isotropic Riemannian G-weighted metrics in the local coordinate system (see
the last section), complete calculations have not been achieved yet. Basically, they
call for the calculations of second derivatives with respect to zand x° = ¢t of the six
fundamental integrals I, Iyo, I33, Loooo, L3333 and Lo33o-

Some important relationships can be henceforth outlined:

oI oI

—_—= 2p[133 -+ I]Z, = 2p[[00 —_— I](Ct),

Oz 9(ct)

oI oI

8—20 = 2p[Loo33 + Toolz, T:to) = —2p[Loooo + Too] (c?),
8133 6133

5 = 2p[Ls33s — I3z, Bet) 2p[Loo3s — Is3)(ct) .
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By contrast, the derivatives of Lggoo, L3333 and Lo33p are not simply expressed as lin-
ear combinations of the six fundamental integrals.

Finally, the contravariant reciprocal coefficients g7 of the g;’s are needed as
well. All these calculations deserve to be undertaken in more detail.

4.6. ISOTROPIC ds? ON A TWO-DIMENSIONAL MINKOWSKIAN SUBSTRATE

In order to simplify the calculation of the curvature tensor the study of the two-
dimensional Minkowskian substrate is tackled. The spatial motions are located
along a single axis (x). The Lorentz group is a 1-parameter group: two directions
are possible and the parameter 8 = v/cis now supposed to vary from —1 to +1.

gll=(XI)=( 7 _ﬂ7>-u where u=<x)
ct’ By v ’ ct)’

The covariant matrix of the operation g is

=23, )= (T )

where w is the “angle of the hyperbolic rotation” g: 8 = thw, v = chw, By = shw.
This angle varies from —oo to +oc.

Since dI?> = v*dv?, the measure of the Lorentz group is dg = v?d3 = dw. On the
other hand,

lew = ul* = 21 = )(er)* = 2] = 2(1 = 7)lfu]*.

Under the isotropic hypothesis uyu(g) = m(c|g|), the Riemannian condition is
always fulfilled, since then dU!' = A,dz,dU° = Agedt, where

+1 o0
Ap=—A; = — m*(c|B|)y* dB = 2/ m?*(c|thw|) chwdw.
- 0
Hence
AZ
B*(u,du) = e g 7
[2/ m(c[thw|)dw]
0

The other integrals are given by

+00
I= 2/ m(c]thw')ep((:hw_l)”u]ll dW,
0

+o0
I =—-I)) = 2/ m(c|th wl)e"(°h"“"1)““”2 chwdw,
0
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Lo= I =0,
+00 5
Loooo = L1111 = —Lgo11 = —Li100 = 2/ mc|th s])e? W=D ch2y dw
0
= Loooo ,
+00 ,
Lioo1 = Loiio = —Liowo = —Loin = —2/ m(c|th w|)e?CBw=DINI sh2y, gy
0

= I — Loooo ,
Loo10 = Ligoo = L1101 = Lo111 = —Looor = —Lg1oo = —Lio11 = —Li110 =0.

Therefore two functions are needed for the calculation of ds®, namely, Ip/I and
Loooo/I. The local coordinate system used in section 4.4. corresponds to the refer-
ence coordinate system of the two-dimensional substrate. In the formula given for
ds® in this local coordinate system, we put dx! = dx?> = 0, and we change dx>
(= dz) for dx. With the aid of the above relationship, one gets

1
ds* = W{gooczdtz + g”d)g -+ 2g01cdtdx} R
I*Bgoo = I - Ioo + pI - (I = Loooo)x* + p(I - Loooo — I3)(ct)?,
IPBgy) = —I - Ing + p(I - Loooo — I3)x* + pI - (I — Loooo)(ct)?,

I*Bgo = p[-I* + I%](ct)x.

Finally, the derivatives of I and Iy, (serving to calculate the curvature tensor) are
much simplified:

8[ BI 3[00 8100
e ploox, a(ct) plooct,  —~ 'pLoooox , B pLooooct
Remark

It is to be remarked that for two infinitely close events on the light cone
(dx = cdt and x = cf), the ds® remains equal to zero, like in the starting Minkows-
kian substrate.

4.7. NON-RIEMANNIAN ISOTROPIC G-WEIGHTED METRICS

With very general maps m(v), B2(u, u + du) depends on both u and du:
1 A3 — A%p*(du) dx? + dy* + dz?

[roa] 7

, where p*(du) =

B*(u,du)=
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p can be regarded as a “3-velocity’”’ measured in the fixed rectangular coordinate
system where uis a 4-vector.
The definition reads

JEC dgr[l — ()

U = P = )

{I-Ij+p(I - Ly — Iy - Iy) XX Ydx'dx/ .

ds? is no longer a quadratic form of the coordinates dx’. Instead, ds* is now a ratio
of two quadratic forms of the dx"’s. Like in a Finsler space, the coefficient g; of
dx'dx’ depends not only on u = {x*} but also on du = {dx*} [8]. This state of
affairs has been already pointed out in the case of some linear representations of
finite groups [5].

The dependence on p(du) shows that ds? is a quadratic form only in the 3D-sub-
space where the ‘“3-velocity” of the displacement in du is specified. In addition,
the coefficients of the crossed terms cdtdx® (x® = x,y or z) must vanish: indeed,
since c2df? = (dx? + dy* + dz*)/p?, these terms are written as

o

2 ) 7
dx +;iy +dz i

and do not have the form dx*dx®. The latter condition boils down to requiring
that the coordinate system (x, y, z, ct) is “synchronous” [9].

cdtdx™ =

5. Case of the whole Lorentz group (including spatial rotations)

Instead of being restricted to Lorentz transformations corresponding to coordi-
nate transformations between moving referentials (characterized by v, 6, ¢), we
might consider the whole Lorentz group including spatial rotations (characterized
by the Euler’s angles o/, 3, 7). The hypothesis “m(g) # 0 = g is a pure Lorentz
transformation (without a spatial rotation) ' is thus abandonned. Nevertheless, the
isotropic conditionm(g = (v, 0, ¢, o/, 8’,v")) = m(v) is still assumed.

The matrices (b;;) of the elements of this group are products:

1+ (y—1)sin’fcos’¢ (y— 1)sin®fsingcos¢ (y—1)sinfcosfcos¢ —ysinfcos ¢l

(v — 1) sin® fsin ¢ cos ¢ 1+(’y—l)sin203in2¢ (v —1)sinfcosfsing —vysinfsingf

(y—1)sinfcosfcosgp (y—1)sinfcosfsing 14 (y—1)cos*8 —vycosbf3
—vsinfcos ¢ —ysin fsin ¢4 —ycos 3 ¥

cosa’cosF cosy —sine/sinyY  sina’cos# cosy +cosa’sinyY —cosvy'sing 0
—sina/ cosy — coso/cos ' sinyY cosa’cosy —sina’cos B siny  siny'sing 0
sin 3 coso’ sino/sin 3 cos 3 0

0 0 0 1
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Since 0 <o/ <27, 0< B <, 0< v/ <2, it is easily verified that the integration over
this group leads to

/ n(v)by(g) dg =0 (where arg=4—37—r 81?74/6‘2 sin 0sin 3 dfdfdpdo/dB dv)
G
exceptfori =j =0:

1

/ 1 (v)boo(g) dg = Ap = 3 / (B B2 dB.
G 0

Thus, ||dU]> = 43 - (cdt)* cannot be proportional to ||dul|* and no Riemannian
G-weighted metric can be defined from the equation applied to this group.

6. Conclusion

The mathematical formalism of the chemical algebra proves to be very general.
It can be applied in a straightforward manner in the light cone of a Minkowski
space endowed with the natural isometric action of the Lorentz group. The peculiar
form of the ds? thereby defined is not physically founded, and it cannot be overem-
phasized that the general principles have no heuristic value a priori. As a comple-
ment, the calculation of curvature tensors has to be achieved. Furthermore, the
study of nonisotropic ds* with weighting maps p4 u(g) = u(gu) should be rapidly
undertaken and compared with the preceding results concerning the occurrence of
a wave function in the definition of ds? from an Euclidean space endowed with its
group of translations [1]. Then, one may think of possible physical speculations for
the parameter p (‘“‘curvature variable” of dimension (length) =2 ?) and for the defini-
tion equation of ds* (a space-time model would be constructed from a flat model
mapped by a scalar “wave function”: this model would be curved by a network of
connections corresponding to the potential motions gathered in a group G and
weighted by a map pyu(g) 7). In particular, it must stressed that in the derivation of
ds?, the coordinate system is not merely a simple numerical reference but refers to
a model as a rectangular trihedron-clock of the Minkowski space. However, these
representations are still far too speculative to be detailed. It is just to be reminded
that all these developments come from the algebraic analysis of chemical pairing
equilibria

2MN 2 MM + NN,
and more precisely from their thermodynamical constant
k= (MM (V]
[MN]

Through a process of mathematical generalization, it has been “applied” when M
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and N represent “‘events in a space-time’’ instead of molecules in a flask .... But
the meaning of the “pairs MM, NN and MN”’ as well as of the “interconversion
2" has been lost .... The superficial approach here reported surely deserves
further investigations, and these are in progress.
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