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The principles and the generalized equation of chemical algebra is extended to a 
Minkowskian substrate E endowed with its improper non-definite-positive metric, where the 
non-compact 6-parameter group G of the Lorentz transformations operates. Given a map 
/z~,,(g) = #(gu)m(g) on G, a "line element" ds 2 is formulated at each point marked by a vector 
u. Assuming "# = 1" and "rn(g) ~ 0 =~ g is a pure Lorentz transformation (without a spatial 
rotation)", the isotropic hypothesis (m depends on a single parameter out of three in G) is first 
studied. In general, ds 2 does not define a Riemannian manifold unless one additional condition 
on m is imposed. Several relationships are established which are useful for the calculation of 
the metric tensor and the curvature tensor. 

1. Introduct ion  

The more general starting material  of  the propositions of  chemical algebra estab- 
lished hitherto is a "subst ra te" ,  i.e. a metric space endowed with a group of  iso- 
metric t ransformations.  Our a t tempt  to apply chemical algebra to the classical 
Euclidean space has led to a remarkably concise formulat ion of  a ds 2 as the exact 
second logarithmic differential of  a scalar "wave funct ion"  associated to a 
Schr6dinger-type equation [1]. In the sequel, the study of  the space-time of  relativ- 
ity is launched. This space-time is not  represented by a metric space in the classical 
sense: the improper "dis tance"  between two distinct events is not necessarily posi- 
tive nor  different f rom zero. In other words, the underlying bilinear form of  1~4 is 
not  definite-positive. The first task is to find out how to formulate  the definition of  
a pairing product  on such a space. Then, by analogy with our previous t rea tment  
[1], we shall consider some group acting isometrically in IR 4, and transitively in one 
part  of  the projective space P(II~ 4) (contrary to translations which are not  linear, 
the considerat ion of  the projective space is needed for l inear  groups cannot  act tran- 
sitively in •4: {0} is an orbit). 
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It is already obvious that spatial rotations are not sufficient. In addition, this 
group must correspond to "physical motions". From a relativistic viewpoint, the 
displacement of the set trihedron + clock can merely be performed with a finite 
velocity v with respect to its initial situation (Iv[ < c), and brings about a slowing 
down of the clock. This slowing down is correlated to v and the admissible transfor- 
mations constitute the Lorentz group. The present report deals with the formula- 
tion of the chemical algebra on the Minkowski space, whose metric is defined by the 
pseudonorm d s  2 = c 2 d t  a - d x  2 - d y  2 - d z  2 and with the Lorentz group as an iso- 
metry group which acts  transitively inside the projective light cone (c2t a - [rl 2 > 0). 
Although the process is only mathematical in nature, the terminology of physics 
("space", "time", "velocity", etc.) is used for the sake of brevity. In order to clarify 
the process, the layout of this article is summarized below: 
2. Generalized equation for improper metric substrates. 
2.1. Expression of the pairing product K p ( u ,  u + du). 
2.2. General expression ofds a. 
3. Minkowskian substrate. 
3.1. Action of the restricted Lorentz group. 
3.2. Integrals on the Lorentz group. 
3.3. Forms of the weighting map/*u,u. 
3.4. Formulation of G-weighted metrics on a Minkowskian substrate. 
4. Isotropic ds 2 for the Lorentz group. 
4.1. Kp-derived integrals. 
4.2. ~-derived integrals. 
4.3. Riemannian condition. 
4.4. Local coordinate system. 
4.5. Curvature tensor. 
4.6. Isotropic ds 2 on a two-dimensional Minkowskian substrate. 
4.7. Non-Riemannian G-weighted metrics. 
5. Case of the whole Lorentz group (including spatial rotations). 
6. Conclusion 

2. Genera l ized equa t ion  for improper  metric substrates 

2.1. EXPRESSION OF THE PAIRING PRODUCT Kp(u, u + du) 

If(E, d) is a metric space, then, 
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If E is a real vector space and if d is the Euclidean distance derived from a definite- 
positive symmetric bilinear form, this definition also reads 

gpP(U, v) = fo  #u.v(g)exp[p(gulu)]dg. fo #u,v(g)exp[p(gvJv)]dg 

f a  #~,v(g)exp[p(gu[v)] dg . fa/Zu,v(g) exp[p(gvlu)] dg 

This definition can be naturally retained for any symmetric bilinearform. The corre- 
sponding map d(u, v) = V/(u - v[u - v) e C is no longer a distance, but is relevant 
in the definition of pseudo-Euclidean spaces (e.g. the Minkowski space). 

Remark 
An alternative generalization of the definition used hitherto for proper Eucli- 

dean spaces could call for the modulus of the exponential terms occurring in the 
integrands instead of the "nacked" exponentials, that is for exp[p Re(guJu)] instead 
of exp[p(gulu)]. Indeed, the former expression afforded a suitable definition equa- 
tion on Hermitean complex vector spaces [2]. Nevertheless, the vector space sub- 
strates to be considered below are real, and the more direct generalization is 
considered a priori. 

2.2. GENERAL EXPRESSION OF ds 2. 

From the pairing product Kp(u, v), a general equation (E) for the definition of 
a distance Dp(u, v) has been devised 

• u,v(D (u, v)) = K (u, v), 
where ~u,v(X) is one numerical map which has been formulated on the basis of a 
set of consistency requirements [3]. 

If G is a finite group, eq. (E) can be applied to any pair of vectors u and v of a 
connected part in a vector space E (called "substrate") leading to a G-weighted dis- 
tance extension Dp(u, v) on E (if the weighting map #u,v(g) is constant, Dp is a com- 
pletely G-invariant distance extension on E/G) [4]. Alternatively, (E) can be first 
applied to infinitely close vectors w and w + dw leading to a G-weighted metric ds 2 
at each point w: the minimum integral of ds along all possible pathways joining u 
and v (if it exists) leads to another distance Lp(u, v). When G is a non-compact 
group such that Dp(u,v) = oo if u -¢ v, the value Dp(u, u) = 0 still holds. Thus, 
when v = u + du, the crude equation has been extended in order to define relevant 
values of ds 2 = @(u,  u + du) "somewhere between zero and infinity" [5]. If 
v = u + du, the expression of the pairing product can be simplified very generally. 
A somewhat tedious calculation leads to 

' P rd2K ' P (I .  d2L - dJdJ')}, K p ( u , u + d u ) ~  1 -t-~l -t-~ 

where 
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I =  fGlzU,u(g) "expI--Pllgu--ull21dg, 

d2K= fGlZU,u(g) . (gduldu) "exp[-P llgu-ull21dg, 

dZL= fa #u,u(g)" (gu[du) -  (gdu lu ) -  e x P I - P  l i e u -  ul[ 2] dg, 

dJ= fG#U,u(g) " (guldu) "exp[-P Hgu--u[[2] dg, 

dJ'=~#u,u(g) '(gdu[u)'exp[-~[lgu-u[[2]dg 

( the no ta t ions  " d "  a n d  " d  2'' deno te  fo rmal  different ia l  forms:  in r igorous  no ta t ions  

used in ref. [5], Kp (u, u + du)  = 1 + ½d2K~0). 
I t  is a l r eady  evident  tha t  clJ = dJ' as soon  as #u,u (g) = #u,u(g -1 ) over  G. 

3. G - w e i g h t e d  m e t r i c s  o f  t h e  L o r e n t z  g r o u p  o n  a M i n k o w s k i a n  s u b s t r a t e  

3.1. ACTION O F  THE LORENTZ GROUP 

W h e r e a s  the g roup  o f  t rans la t ions  in ]~3 is a 3 -pa ramete r  group,  the  res t r ic ted  

Lo ren t z  g roup  is a 6 -pa rame te r  group,  bu t  a Loren tz  t r a n s f o r m a t i o n  which  does  
no t  involve a spatial  ro ta t ion  is cha rac te r i zed  by three n u m b e r s  v (o r /3  = v/c), 0 
a n d  ~b. These  num be r s  define the  m o d u l u s  and  the d i rec t ion o f  the  relat ive veloci ty  v 

o f  two  t r i h e d r o n - c l o c k  systems: 0 ~</3 ~ 1, 0 < 0 < 7r, 0 ~< ~b < 27r. In  a m o r e  abs t r ac t  
way ,  these t r ans fo rma t ions  are  "hype rbo l i c  ro t a t ions"  in the  M i n k o w s k i  space  
wi th  one p lane  con ta in ing  the t ime axis. I t  is to be verif ied tha t  if  (x, y, z, cO is a 
4 -vec tor  a n d  if ( x ', y', z', cf ) = g( x, y, z, ct ), then,  

x '  = [1 + (7 - 1) sin 2 0 cos 2 ~b]x + (7 - 1 ) sin 2 0 sin ~b cos ~b y 

+ (7 - 1) sin 0 cos 0 cos q~ z - 7 sin 0 cos ~b/3 ct, 

Y' = (3' - 1) sin 2 0 sin q~ cos q5 x + [1 + (7 - 1 ) sin 2 0 sin 2 ~b ] y 

+ (7 - 1) sin 0 cos 0 sin q~ z - 7 sin 0 sin q~/3 ct, 

z' = (3' - 1) sin 0 cos 0 cos ¢ x + ( ' , / -  1 ) sin 0 cos 0 sin ~by 

-4- [1 -t- ('7 - 1) cos 2 t912 - ~[ cos 0/3 ct; 
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c t  = -q '  sin 0 cos q5/3 x - 7 sin 0 sin ~b f ly - 7 cos 0/3z + 7 ct, 

where:/3 = v / c  and ~, = [1 -/32]-1/2 
On the other  hand,  a shor t  calculat ion leads to 

l i e u  - ull 2 = 2 ( 1  - ~ / ) [ (c t )  2 - (sin 0cos ~bx + sin 0 sin ~by + cos 0z)2], 

where g is a Lorentz  t rans format ion  (characterized by a vector  v), u = (x, y, z, ct) 
is a 4-vector,  and II • II denotes the p s e u d o n o r m  of  the Minkowski  space. 

R e m a r k  1 
It canno t  be overemphasized tha t  in the above formulae,  g denotes  a pure  Lor- 

entz t r ans fo rmat ion  wi thout  a c o m p o n e n t  of  spatial rotat ion.  Any  element  of  the 
Lorentz  g roup  is wri t ten gk, where k is a pure  spatial rotat ion.  Nevertheless,  this 
general  writ ing will be inessential in the sequel, for it will be supposed  tha t  
/~u,u(gk) # 0 o n l y i f k  = e. 

R e m a r k  2 
The above squa red"d i s t ance"  between gu  and u can be complex or real, positive 

or negative.  It is real (like 3') as soon as v ~< c. 

R e m a r k 3  
Cont ra ry  to the case of  t ranslat ions in the Eucl idean space where [[gu - ul12 did 

no t  depend  on u, I l gu  - u l l  2 now depends  on both  g and u. 

R e m a r k 4  
W h e n  v < <  c, i.e. when fl --~ O, then, 

, [ g u -  ul[2 ~ 2 ( 1 - 7 ) ( c t ) 2 , ~ 2 ( - l ~ ) c 2 t 2 ~ - ( v t )  2 , 

i.e. I lgu  - ull  2 ~  - (v t )2 :  w e  f i n d  again the expression of  I lgu  - ull  2 (except the 
sign minus ,  as expected) for the Eucl idean space where Lorentz  t rans format ions  
are replaced by translat ions g character ized a vector vt. 

R e m a r k 5  
The  Lorentz  group (Lie group of  d imension 6) does not  act transit ively in the 

projective space p(]~4) (there are two orbits of  lines), bu t  it acts transit ively in the 
orbi t  cor responding  to the interior  of  the light cone (c2t 2 - Irl 2 > 0). In the sequel, u 
denotes  the coordinates  of  any point  inside this region. 

3.2. INTEGRALS ON THE LORENTZ GROUP 

On the very outset,  the measure  dg serving to define ds 2 is identified with a vol- 
ume  e lement  in the velocity space t ime the Haar  measure  of  the g roup  of  spatial  
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rotations dk = 1/87r 2 sin/3' da'dfl'dT" (where a',  if, 7' are Euler's angles). The rela- 
tivistic velocity space is endowed with the metric (in spherical coordinates): 

dl 2 = 74dr  2 + 72v2dO 2 + 72v 2 sin 2 0 d~b 2 . 

The volume element of this space is proportional to the square root of the modulus 
of the (diagonal) tensor matrix time dvdOdck. Thus, taking the proportionality fac- 
tor equal to 3/41rc 3 (in order to normalize the volume of the "sphere" of physical 
velocities: v ~ c), 

3 V/74.72v 2 . 72v2sin 20dvdOdc~dk = ~--~@fl2sinOdfldOdfbdk. dg --- 47rc 3 

From a set-theoretic standpoint, the Lorentz group is regarded as a part of N 6 (6- 
parameter group). The integral symbol f c""  dg sweeps all the possible directions 
of the velocity v (0~<0~<Tr, 0~<q~<27r) and all the possible Euler's angles 
(0 ~< a '  ~< 27r, 0 ~< ff ~< 7L 0 ~< 7' ~< 270. Regarding the modulus of v, G might gather all 
the possible values from 0 to +c~ instead of being restricted to physical velocities, 
i.e. to 0 ~< v ~< c (the composition of two operations v and V such that v ~< c, v ~ ~< c is 
an operation v" such that v" ~< c). Whereas the domain 0 ~< fl < cx~ makes G operate 
in the complexified vector space of E (a real event can be transformed into a non- 
real one), the domain 0 ~< fl ~< 1 ensures that G operates inside the real vector space E 
(and inside the light cone). The latter restriction reflects the requirement that if u 
is an event (with real space and time coordinates), gu is an event as well, for 7 is then 
real. 

Finally, it is to be reminded that Gis not compact: 

/0 f0/0 /0 c 1 f2~ f2,~ ,~ 3 2~ "/4v~ 
dg = ~2  Jo Jo sin fl' da' dfl' dT'. ~ sin 0 

f01 f12 2) 2 dfl x dvdOd4 = 1.3 (1 --;3 = +oo.  

3.3. FORM OF THE WEIGHTING MAP #u,u 

At the outset, it has been supposed that, apart from the algebraic datum of an 
action of G onto E, no quantitative link is presupposed between G and E. Therefore, 
/zu,u should have the form P~u,u(g) = m(g)#(gu), where m and # are independent 
weighting functions of G and E, respectively. In our search for G-weighted metrics 
on the Euclidean space where G is the group of translations, it has been assumed 
that m = 1. Here, although it might be interesting, the same assumption does not 
seem to allow for straightforward simplifications [6]. In the sequel, we are first con- 
cerned with the symmetric assumption # = 1. The latter hypothesis has been the 
starting motivation for generalizing the definition equation of completely G- 
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invar iant  distances to the definit ion equat ion  of  G-weighted distances, the two defi- 
ni t ions meet ing  when #u,v = 1. The m a p  #~,~ = m can be regarded as the character-  
istic funct ion  of  a fuzzy subset of  the Lorentz  group [4,7]i F r o m  now onwards  and 
unti l  section 5, it is assumed that: 

#u,u(g) ¢ 0 only if g is a Lorentz  t ransformat ion ,  

i.e. if  no  spatial  ro ta t ion  is involved.  

In o ther  words,  the integral domains  can be restricted to only three parameters  
out  of  six: v, 0 and ¢. This hypothesis  allows us for keeping one s t rong analogy with 
the case of  the 3-parameter  group of  t ranslat ions in the 3D-Eucl idean space (rota- 
t ions were not  considered either). This analogy might  be interesting owing to the 
f inding tha t  the metr ic  ds 2 was completely  de te rmined  by a solut ion of  the Schr6- 
dinger  opera tor  ("wave funct ion") .  

3.4. FORMULATION OF G-WEIGHTED METRICS ON A MINKOWSKIAN SUBSTRATE 

W h e n  7 is real (i.e. when v < c ) ,  then 1 - ' ) , < 0 .  Since Ilgu- nil 2 = 2(1 - 7 )  
x [(ct) 2 - (sin 0 cos ¢ x + sin 0 sin ¢ y + cos 0 z)2], the real terms - (p/2)Ilgu - u l l  2 in 
the exponent ials  are negative if and  only i f p  < 0 for r < ct and p > 0 for r > ct: this 
is a necessary condi t ion to get convergent  integrals with s tandard  maps  #u,u (e.g. 
#u,u = 1). Possible interpretat ions o f p  will be discussed later, but  the condi t ion  
p < 0 seems to be required inside the light cone (along the t ime axis), while the oppo-  
site condi t ion  (p > 0, which has been hi ther to  required for s tandard  distances and  
Eucl idean metrics) would  have been required outside the light cone. 

Given a t ime coordinate  x ° = ct and three or thogonal  spatial coordinates  
X 1 = X ,  X 2 = y, x 3 = z, a Lorentz  t rans format ion  g (without  a spatial rota t ion)  in 
this coord ina te  system is given by a 4,4-matrix M ( g )  = (a}(g))0~3: the coefficients 

a} are given by the above relat ionships x 'i ~ = 1  a}(g) x j  o~.j~ = n (the a}'s depend  on the 
pa ramete r s  of  g, namely:  v, 0 and ¢). g acts as a coordinate  t ransformat ion ,  and  
M ( g )  is a symmetr ic  matrix,  i.e.: a~ = 4-  Since a}(g) = O x ' i / O x  j ,  {x/} and { x  'i} 

denote  the coordinates  of  one con t ravar ian t  4-vector in two " rec tangular  coordi-  
nate systems".  Assuming  the definit ions )co = x °, xl = - x  1, x2 = - x  2, x3 = - x  3 

and  x~ = x '°, x i = - x  '1 , x i = - x  '2, x~3 = - x  '3, { x i }  and {x~i} denote  the coordi-  
nates  of  one covar ian t  vector. Indeed,  the covariant  set of  equat ions  
{ x  'i = a} (g )xJ} ,  namely,  

x 'o = a ° ( g ) x  ° if- a ° ( g ) x  c~ , 

x ' Z  = a~o(g)x ° + a ~ ( g ) x  c' 

can be wri t ten as 
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x o' = a°(g)xo - a~(g)x~ 

-xl~'  = a°~(g)xo - a~(g)x~ 

By changing the group parameter/3 for -/3 to get a{(g -1) from aj(g) ,  it is verified 
0 thata00(g) a O ( g - 1 ) , _ % ( g )  aO(g-1), /~ ~ - 1  /~ 5 - 1  = = a o ( g ) = - a o ( g  ) , % ( g ) = % ( g  ).Thus, 

x} = 4(g-1)xj. Since 4 ( g  -1) = OxJ/Ox', {xi} t ransforms as a covariant  vector 
under the Lorentz transformation g of the reference contravariant coordinates. 

Thus, we calculate the "inner products": 

( g d u  l d u  ) = d x  'i d x  i = dx  '° dx  ° - d x  ,1 &ix I _ d x  t2 dx2  - dx  t3 dx3 = a O. ( g ) dx i  d x  j , 

(gu Idu) = x ~dx i = x ' ° d x °  - x ' l  d x  I _ x adx2 - x '3dx 3 = ai j (g )xJdx  i , 

(gdulu) = d x  'i xi  = dx  '°x° - dx  '~ x ~ - d x  '2x2 - dx '3x3 = ai j (g)x idx  j , 

where aoj = a ° and aaj = - a  j ,  c~ = 1, 2, 3. Thus, 

{ - [1  + (3' - 1) sin 20cos  2 qS] -[(3" - 1) sin 20 sin q~cos ~b l 

/ - [(3' - 1) sin 2 0 sin ¢b cos qS] - [1 + (7 - 1 ) sin 20 sin 2 ~b] 

(a/j) = / - [ ( 3 ` -  1 ) s in0cos0cosq5]  - [ ( 3 ' -  l ) s i n0cos0s in~b]  

\ - 3 '  sin 0 cos q~13 -3 '  sin 0 sin ~b/3 

- [ ( 7  - 1) sin 0 cos 0 cos ~b] 

- [ ( 7  - 1) sin 0 c o s 0 s i n  q~ l 

-[1 + (7- 1)cos2 o] 
- 7  cos Off 

7 sin 0 cos ~b/3"~ 

q, sin 0 sin ~b/~ ] . 

7 c o s  0/3 ) 

7 / 

Indeed, the starting coordinates ~ (but not necessarily the x ' i ' s  if/3/> 1) are real. If  
we put 

I o =  f a # u , u ( g ) a i j ( g ) e x p [ - P [ [ g u - u l l 2 ]  dg ,  

and 

Liko" = L #u'u(g)aik(g)ao'(g)exp [ - P  I lgu-  ul12] dg' 

then, 

d2 K = I i jdx i  d x  j , 

d J  = Io.xJdx i , dJ '  = I i jx idx j and thus dJdJ '  = Iiklo.xkxadxidx j , 

d2 L = LikuXk xt  dxi dx  j . 

It follows that 

Kp(u, u + du) ~1 + p {Io.dxidx j + [ ( I  . L i w x k x l d x i d x  j -  I i lJo .xkx ldx idx ' )  } 

,.~1 + P { I i j + P ( l .  L i k l j - l i k I o . ) x k x l } d x i d x  , . 
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Cont ra ry  to the group of  t ranslat ions in N n, the Lorentz  g roup  G acts l inearly in 
11~ 4. The  formula  

~u,u+du(ds')') ~ 1 + p B 2 ( u ,  du)ds 2 

can be used to formula te  the basic equat ion  (E) serving to define a G-weighted 
metr ic  ds 2 f rom Kp (u, u + du)  [4]. Fo r  a real bilinear form, B 2 is given by 

B2(u, du)  = 1 IIdUII 2 

[ L  #u,u(g) dg] 4 ]]dul]2 ' 

where 

dU = L ~'u(g)(gdu) dg. 

In conclusion,  

d s 2 _  1 z 2 . 8 2  ( I  - Iij + p f f .  L;k0 - I;k-/0)x x }dWdx j , 

where B 2 stands for B 2 (u, du).  
It  is notewor thy ,  that  if # = 1, then B 2 = 0 and no definit ion of  ds 2 is obta ined  

f rom (E) (instead ofds  2 we might  get a formal  defini t ion ofds4). 

4. I s o t r o p i c  ds 2 o f  the  L o r e n t z  g r o u p  

The  title term means  that  i f g  is a Lorentz  t rans format ion  defined by v, 0, ~b, the 
member sh ip  degree of  g to the considered fuzzy subgroup  is independent  o f  the 
direct ion of  the velocity v, i.e. of  bo th  0 and ~b. Thus,  we may  write m(g) = m(v). 

4.1. K p - D E R I V E D  I N T E G R A L S :  I ,  I/j and L~lj 

• Calcu la t ionof I=Lm(v)exp[-Pl[gu-u[[21dg  

I - -  47~c 3 Jo m(v) exp[p( 7 - 1 ) { ( c t )  2 - (sin 0 cos ~b x + sin 0 sin ~by 

-{- COS 0 Z)2}]~42) 2 sin 0 dv dO dcb. 

Let k~O,~) = (ct) 2 - (s in0cosq~x + sin0sinq~y + cos0z)  2 = (ct) 2 -  ( r - v / v )  2 
= (ct) - r 2 cos2(nv, r) where nv is the uni t  vector normal  to the sphere or radius 1 
and parallel to v (k does not  vary with the modu lus  v). I f  we put  
I = 3 f~ m(cfl)Ia(fl)13274 dfl, the integral Ia on (0, ~b) reads 
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F = exp[p(7 - 1)k(O, ~b)] sin 0 dO dcb 
Ia -~dO dO 

= ~ e x p [ p ( 7  - 1)(ct) 2 ] / / e x p [ - p ( 3 '  - 1)r 2 cos2(nv, r)] dS. 
S o 

The integral over the whole sphere S ° does not depend on the direction of  r ( I  and 
Ia are "scalar tensors" for linear Lorentz transformations).  It is calculated for r 
along the z-axis (x = y = 0 and z = r), for then (nv, r) = 0: 

/0 Ia = ~exp~o(3, - 1)(ct) 2] exp[-p(3, - 1)r2 cos 2 0] sinOdO 

= exp[p(q, - 1)(ct) 2] .~x exp[-p(~, - 1)rau 2] du. 

Therefore,  

/0'/0' I = 3 exp[p( 7 - 1)(ct) 2] m(cfl) exp[-p(3, - 1)r2u2]f12~ '4 dfldu. 

Lfa'f'/o' • Calculation ofI  O. = m (cfl)aij (g) exp~vk(0, ~b)(7 - 1 )]~4fl2 sin 0 
x dl3 dO &b, and 47r J0 J0 

3 f2~f~rfol Liktj = 4-~J0 JO m(c/3)aik(g)ao(g)exp~k(O'dp)(7- 1)]@fl2sinOdfldOdq3 

Contrary  to I, these integrals are not  scalar tensors: whereas k(O, q~) = (ct) 2 
- r  2 cos2(nv, r) depends on both (0, ~b) and u, the coefficients aij(g) or aik(g)atj(g) do 
not  depend on u but depend explicitly on (0, ~b). Changing the integrand variable 
nv for the unit vector along the r-axis does not lead to an obvious simplification. 

4.2. T H E  # D E R I V E D  I N T E G R A L S  

• Calcula t ionofB2(u,  du) = 1 II Jtl 2 
[fG ]'Zu, u (g )  dg] 4 tldull 2 '  

The vector d U  = fa m2 (v) (gdu) dg can be refered to as its components  in contra- 
variant  notations: 

dUe= fG m2(v)a}(g)dxJ) dg = / G  m2(v)a}(g) dg . dx j . 

It is easily verified that all non-diagonal  terms fa m2 (v)aj (g) dg (with i ~ j)  vanish. 
Consequently,  dUi= Aidx i (no summation on /) with Ai = fam2(v)ai(g)dg (no 
contract ion on i). It is easily verified that 

lf0  A s -  c3 (3 '+2)mZ(v)@v 2dv for ~ = 1 , 2 , 3 .  
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A n d  

3 L c  
AO = -~  3"m2(v)3"4v2 dv. 

In conclusion,  

IlaXSll 2 = A2(dxO) 2 _ A 2 { ( d x l )  2 + (dx2) 2 + (dx3) 2} 

and 

B2(u, du) = + - A )(dx°llldull) 2 

[ L  m(v) dg] 4 

4.3. RIEMANNIAN CONDITION 

In order  that  B2(u, du)  do not  depend  on du,  it is necessary that  A0 2 = A~, i.e. 

£0 (7 -- 1)m2(c/3)3'4/3 2 d/3 = 0 

Then,  

l rn(c/3) = ~-7 - -  or 

f0 
or (2 7 + 1)m 2 (C/3)"[4/3 2 d/3 = 0. 

1 If(/3) ] 1//2 
L23' + l j ' 

where f(/3) can be any funct ion satisfying f~f(3)  dfl = 0 (fl = v/c). I f f  is bound  
to be real-valued, it assumes both  positive and negative values: thus fl/2(/3) and  
hence m (c/3) assume both  real and  imaginary  values. 

It should  be remarked  that  the first case exhibits a singulari ty at 3, = 1, i.e. at 
/3 -- 0. On the contrary,  the pole 7 = - 1 / 2  of  the second expression is not  a t ta ined 
in the in tegrat ion domain  to be considered (0 ~</3 ~< 1). 

F r o m  the d a t u m  of  re(c/3), the other integrals serving to define ds 2 have to be cal- 
culated,  to wit: fa/Zu.u(g) dg, Ao, = Ao, Lij and Liktj. These are, perhaps,  nei ther  all 
real nor  all pure  imaginary,  and the equat ion  would  define a non-real  metr ic  ds 2, 
even i f u  and u + d u  mark  "real events".  

The  condi t ion  f~f(/3) d/3 = 0 serving to define a R iemann ian  G-weighted metr ic  
f rom the m a p  

1 [~'(/3~] 1,2 1 r f(/3)]1,2 
re(c~3) = ~ I o r  --v3'2 j 

is equivalent  to f(/3) = F(/3) - f l  F(/3) d/3, where F is now any integrable m a p  on 
[0,1]. 

Fo r  instance, if F(/3) =/3,  then f(13) = / 3  - 1. I f  F(/3) = 7, then f(/3) = 3' - 7r/2. 



276 R. Chauvin / Chemical algebra. VII 

Assuming  that  the corresponding integrals f a  m(g)dg ,  As = A0, Lij and Liko" 
are convergent ,  the resulting coefficients g,j of  ds ~ are certainly not  all real. Separat-  
ing the real and  the imaginary  parts  of  ds 2, the equat ion  furnishes two R ieman ian  
metrics,  namely  Re(ds 2) and Im(ds2), on the same Minkowsk ian  substrate.  

In fact, m a n y  simple funct ions m(c~3) can be found fullfilling the condi t ion  
(A0) 2 = (A~,) 2, and it seems arbi trary to select a "na tu ra l "  one. Nevertheless,  the 
general  process of  calculat ion can be resumed as follows. 

4.4. USE OF A LOCAL COORDINATE SYSTEM FOR ISOTROPIC R I E M A N N I A N  
G-WEIGHTED METRICS 

1 , j # 0  ¢ ,  
Li33j # 0 ¢=~ 
Liooj # 0 ¢ ,  
Li3oj 7 ~ 0 ¢~ 
Lio3j 7 ~ 0 ¢e~ 
Consequent ly ,  

One decides to calculate ds 2 at one point  u on the z-axis: x = y --- 0, z --- r > 0 .  
Since the angle ~b does not  appear  in the exponential  te rm ( l [ g u - u l l 2 =  2(1 
-7 ) [ (c t )  2 - r  2 cos 2 0]), the integrals defining ds 2 are m u c h  simplified. This s tudy 
does not  entail  a loss of  generality: indeed, the metr ic  is here supposed  to be isotro- 
pic, and  this choice boils down to selecting a local spatial coordinate  system 
(x, y, z) with  the z axis passing th rough  the point  M apar t  f rom the origin by a dis- 
tance r (the x, y axes span a plane which is parallel to the tangent  plane to the sphere 
o f  radius r at M).  Thus,  

I2B2ds2 = { I .  I O. + p ( I .  Lt33j - -  I i 3 1 3 j ) Z  2 + p ( I .  Liooj - -  l i o I o j ) ( x O )  2 

+ p ( I  " Li3oj - Ii3Ioj + I " Lio3j - I ioI3 j )zx°}dxidx  j.  

It is to be verified that  
i = j ,  

i = j ,  
i = j ,  
(i = 3 a n d j  = 0) or (i = 0 a n d j  = 3). Thus,  Z i 3 0 i  = O. 
(i = 3 a n d j  = 0) or (i = 0 a n d j  = 3). Thus,  L i 0 3 i  = O. 

ds 2 = gooc2dt 2 q- g l l d X  2 4- g22dy 2 q- g33dz 2 -4- 2go3cdtdz  , 

where 

I2BZgoo = I .  Ioo + p I .  L0330 z2 + p ( I .  Loooo - I~o)(Ct) 2 , 

IZB2g33 = I .  133 + p ( I .  L3333 - I23)z2 + p I .  L3oo3(ct) 2 , 

I2B2gll  = I .  Ill  + p I .  L1331z 2 + p I .  Llool(ct) 2 , 

I2Bag22 = I .  I22 + p I .  L2332z 2 + p I .  L2002(ct) 2 , 

12B2go 3 = p [ I .  (L0303 -4- L0033) - Io0" 133] (c t )z ,  
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3 f ' ~ f  1 I = ~ JO Jo m(cfl) exp[p(7  - 1)((ct) 2 - r ~ cos 2 0)]fl274 dfl sin 0 dO 

= 3 foo 1 f lm(c f l ) exp[p (7 -  1)((ct)2-r~u2)]f1274dfldu , 

folfo 1 Ioo = 3 7" m(cfl) e x p . ( 7  - 1)((ct) 2 - ~u2)]f1274 dfldu, 

foXfo 1 /33 = 3 - [1  + ('y - 1)u2] • re(eft)exp[p( 7 - 1)((ct) 2 - r2u2)]fl2")'4dfldu, 

I l l  = I22  

=3 fo 1 fo 1 -  [ 1 +  1 ( 3 , - 1 ) ( 1 -  u2)] .m(c f l )exp~(7-  a ) ( ( c t ) 2 - r 2 u 2 ) ]  

X fl2~,4 dfldu = - [  - ½(Ioo + I33), 

/--,0330 = L3003 = -L0303 

= 3 f l  f l  -72/32u2" m(cfl)exp.(7 - 1)((ct) 2 - g2u2)]fl2~4dfl du, 
Jo do 

folfo ' Loooo = 3 72. m(cfl) e x p . ( 7  - 1)((c/)  2 - r2u2)lfl2"Y 4 afldu, 

folfo l L3333 = 3 [1 + ('y - 1)u2] 2- m(cfl) e x p ~ ( 7 -  1)((ct)2--r2u2)]fl2~/4 dfldu, 

L1331 = L2332 

= 3 f o l  f o l l  ( " / -  1)2u2(1 - ~ ) - r e ( e f t ) e x p [ p ( 3 ,  - 1)((ct)  2 - r2u2)] 

X fl2"),4dfl du = 1 ( I  - L3333 - L0330) , 
z 

LlOOl = L2002 
1 1 1 

= 3 fo  fo  - 2 ~ 2 ( 1  - u2)f12" m(cfl)exp[p(7- 1)((ct) 2 - raua)] 

1 ( I  - Loooo - Lo33o) , X fl2,,{4 dfl du = 
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f01f0 l L0033 = 3 --')'[1 + ('7 -- 1)U2] " m(ct3) 

x exp[p(7 -- 1)((ct) 2 - r2u2)]f12~ 4 df l  dR 

= - - I  - -  133 - -  I00 + L0330 • 

Six fundamental integrals are therefore to be calculated: I, Ioo, I33, Loooo, L3333, 

/-,0330. 

4.5. C U R V A T U R E  T E N S O R  

Given an isotropic Riemannian G-weighted metric ds 2 = go.dxidx j, it is natural 
to seek for the expression of the curvature tensor 

or, Jh or~k 
KtJhk -- Ox k Ox h + r . J~r ,m ,  - r . J ~ r , 5 ,  

where /~hJk denotes the natural affine connection, i.e. the Christoffel symbols of 
the second kind: FhJk = g/J Fhlk 

Calculation of the Christoffel symbols of the first kind 

1 ~Ogk! + Oglh Oghk } 
l"hlk = ~ [-3-X-;X h Ox ~ Ox t 

passes through the calculation of the first partial derivatives of the ghk: 

og0 ] 
Ox,, Ox,, { I .  1u + p ( I  . L~.'  - 1~ . 1. ')xkx t} 

1 [O(lij/I) rO(Lik.'/I) 0(I.'/1) 0 .] -s2L +P[ 1,- 1/j2; 
( t i ~  timkj Iik Imj Iim liJ)xk] 

+P - - - ~  I I I I " 

For isotropic Riemannian G-weighted metrics in the local coordinate system (see 
the last section), complete calculations have not been achieved yet. Basically, they 
call for the calculations of second derivatives with respect to z and x ° = ct of the six 
fundamental integrals I,  Ioo, •33, LO000, L3333 and L0330. 

Some important relationships can be henceforth outlined: 

OI OI 
0---z = 2p[I33 + I]z, O(ct) 

0Ioo 0Ioo 
Oz - 2p[Lo033 + Ioo]z, O(ct) 

0133 0133 
Oz -- 2p[L3333 -/33]z, O(ct) 

- 2 p [ I o o  - 1 ] ( c t ) ,  

- -2p[ro0o0 + Ioo] (ct), 

- 2p[~o33 - 133](a) .  
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By contrast ,  the derivatives of  L0000, L3333 and L0330 are not  simply expressed as lin- 
ear combina t ions  of  the six fundamenta l  integrals. 

Finally,  the cont ravar ian t  reciprocal coefficients ga of  the g , /s  are needed as 
well. All these calculations deserve to be under taken  in more  detail. 

4.6. ISOTROPIC ds 2 ON A TWO-DIMENSIONAL MINKOWSKIAN SUBSTRATE 

In order  to simplify the calculat ion of  the curvature  tensor  the s tudy of  the two- 
d imensional  Minkowsk ian  substrate is tackled. The  spatial mot ions  are located 
a long a single axis (x). The Lorentz  g roup  is a 1-parameter  group:  two direct ions 
are possible and the parameter /3  = v / c  is now supposed  to vary f rom - 1 to + 1. (x) 

g u  = = • u,  
ct ' - /3 ) ,  

The covar iant  matr ix  of  the operat ion g is 

(x) 
where u = 

ct 

chw s w) 
( a i j ( g ) ) =  _/3), ), \ - s h w  chw ' 

where  w is the "angle  of  the hyperbolic ro ta t ion"  g:/3 = th w, 3' = ch w,/3), = sh w. 
This  angle varies f rom - o o  to +oe.  

Since dl  2 = ),4dv2, the measure  of  the Lorentz  group is dg = ),2d/3 = dw. On the 
other  hand,  

I l g u - n i l  z =  2 ( 1 -  )')[(ct) 2 -  x 2] = 2(1 -) , ) l lul l  2 

U n d e r  the isotropic hypothesis  #u,u(g) = m(cl/31), the R iemann ian  condi t ion  is 
always fulfilled, since then d U  l = A l d z ,  d U  o = Aocd t ,  where 

L + I  fo+OO 
Ao = - A 1  = - m2(cl/3D), 3 d/3 = 2 m2(clth w D ch w d w .  

1 

Hence  

~ ( u ,  au) = "402 

[2 fo+°°m(clth wl) dw] '" 
The  other  integrals are given by 

f+oo 
I = 2 m ( c l t h w l ) e  p(chw-1)llull2 d w ,  

.tO 

f +oo Io0 = --Ill = 2 m ( c l t h w l ) e  p(chw-1)lluLI2 c h w d w ,  
dO 
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110 = - - I 0 1  = 0 ,  

[+oo 
L0000 = L l l l l  = -L0011  = - L l l 0 0  = 2 m~ctths~jep(ChW-l)llull2ch2wdw(I I~ 

dO 

: LOOOO 

f0 L1001 : LOllO = - -LI010 = - L o I o 1  = - - 2  m ( c l t h w l ) e p ( c h w - 1 ) l l u l l Z s h 2 w d w  

= I - Loooo, 

Lo010 = L1000 = Lit01 =/--9111 ---~ -Lo001  ---~ - L 0 1 0 0  =- -L1011  =- -L l l l 0  = 0. 

Therefore  two functions are needed for the calculation of  ds a, namely,  Ioo/ I  and 
Loooo/I. The  local coordinate system used in section 4.4. corresponds to the refer- 
ence coordinate  system of  the two-dimensional substrate. In the formula  given for 
ds 2 in this local coordinate system, we put dx  1 = dx 2 = 0, and we change dx 3 
(=  dz) for dx. With the aid of  the above relationship, one gets 

d s 2 _  1 B212 {gooc2dfl + gl ldX 2 + 2g01 cdtdx}  , 

I2B2goo = I .  Ioo + p I .  ( I  - Loooo)X 2 + p ( I .  Loooo - I20)(ct) 2 , 

I 2 B 2 g l l  = - I  . Ioo + p ( [  . Loooo - [20)x2 + p I  . ( [  - Loooo) (c t )  2 , 

I2B2gol = p [ - I  2 + I~o](Ct)X. 

Finally, the derivatives of  I and Io0 (serving to calculate the curvature  tensor) are 
much  simplified: 

OI OI 0Ioo 0Ioo 
Ox -- 2pIoox, O(ct) -- 2pIooct, Ox -- -2pLoooox, O(ct) = 2pLooooct. 

R e m a r k  
It is to be remarked  that  for two infinitely close events on the light cone 

(dx  = cdt and x = ct), the ds 2 remains equal to zero, like in the starting Minkows-  
kian substrate. 

4.7. N O N - R I E M A N N I A N  I S O T R O P I C  G - W E I G H T E D  M E T R I C S  

2 With very general maps re(v), B (u, u + du) depends on both u and du: 

B2(u, du)  = 1 A 2 - AZ~p2(au) 4 1 tC(du) where p2(du) dx2 + dy2 + dz2 
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p can be regarded as a "3-velocity" measured in the fixed rectangular coordinate  
system where u is a 4-vector. 

The definition reads 

ds2 [ / G m ( v ) d g ] 4 [ 1 -  p2(du)] 

/2[A2 - A2p2(du)] { :  :o + p ( :  L,kO - I,k. IO)xkx }a ddx: . 

ds a is no longer a quadrat ic  form of  the coordinates  dx i. Instead, ds a is now a ratio 
of  two quadrat ic  forms of  the dx~'s. Like in a Finsler space, the coefficient g;j o f  
dxidx  j depends not  only on u = {x k} but  also on du  = {dx k} [8]. This state of  
affairs has been already pointed out  in the case of  some linear representat ions of  
finite groups [5]. 

The dependence on p(du) shows that ds 2 is a quadrat ic  form only in the 3D-sub-  
space where the "3-veloci ty"  of  the displacement in du  is specified. In addition, 
the coefficients o f  the crossed terms cdtdx ~ (x ~ = x, y or z) must  vanish: indeed, 
since c2 dt 2 = ( dx a + dy 2 + dz2)/p 2, these terms are writ ten as 

cdtdx ~ = V/dx2 + dy 2 + dz 2 dx  ~ 
P 

and do not  have the form dx~dx ~. The  latter condit ion boils down to requiring 
that  the coordinate  system (x, y, z, ct) is "synchronous"  [9]. 

5. Case  o f  the  w h o l e  L o r e n t z  g r o u p  ( including spat ia l  ro t a t i ons )  

Instead of  being restricted to Lorentz t ransformations corresponding to coordi-  
nate t ransformat ions  between moving referentials (characterized by  v, O, cb), we 
might  consider the whole Lorentz group including spatial rotat ions (characterized 
by  the Euler 's angles a', /3/, 3"). The  hypothesis "rn(g) ¢ 0 =~ g is a pure Lorentz  
transformation (without  a spatial ro ta t ion)"  is thus abandonned.  Nevertheless,  the 
isotropic condit ion m(g ,~ (v, O, cb, a', /3', 7')) = re(v) is still assumed. 

The matrices (bij) of  the elements of  this group are products:  

1 + (-~ - 1) sin 2 0 cos 2 0 (7 - 1) sin 2 0 sin 0 cos 0 (.), - 1) sin 0 cos 0 cos ~b -"/sin 0 cos q~/3 

( 7  - 1) sin 2 0 sin 0 cos ~b 1 + (7 - 1) sin 2 0 sin 2 q~ ("/-  1) sin 0 cos 0 sin q~ - 7  sin 0 sin 013 

( 7 -  1)sin 0cos 0cos q~ ( 7 -  1) sin 0 cos 0 sin 0 1 + ( 7 -  1) cOs20 --TCOS O~ 

- 7  sin 0 cos 03 - 7  sin 0 sin 03 - 7  cos 03 7 

[ COS a' COS 3' COS 7' - sin a' sin 7/ sin a' cos ]Y cos 7' + cos a' sin 7' - cos 3/sin 3' 0'~ 
! 

J 
[ - s i n a ' c o s T '  - cos a' cos 3' sin 3/ cosa'cosT' - sin a' cos 3' sin ~ sin'3/sin3' 

o / 

sin 3' cos a' sin a ~ sin/3' cos 3' 

0 0 0 
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Since 0 ~< a ~ ~< 27r, 0 ~< fl' ~< 7r, 0 ~< 7' ~< 27r, it is easily verified that the integration over 
this group leads to 

fam 2(v)bij(g) dg =O (where dg= 3 1 ,),4fl2sin0sinffdfld0dCdc,dffdT,) 
87r 2 

except for i = j = 0: 

/0' a m 2 ( v ) b o o ( g )  dg  = Ao = 3 ",/m2(cfl)',/4fl 2 d f l .  

Thus, ]]dU]] 2 = A 2. (cdt) 2 cannot be proportional  to [[dull 2 and no Riemannian 
G-weighted metric can be defined from the equation applied to this group. 

6. C o n c l u s i o n  

The mathematical  formalism of the chemical algebra proves to be very general. 
It can be applied in a straightforward manner  in the light cone of  a Minkowski  
space endowed with the natural isometric action of the Lorentz group. The peculiar 
form of  the ds a thereby defined is not physically founded, and it cannot be overem- 
phasized that the general principles have no heuristic value a priori. As a comple- 
ment,  the calculation of curvature tensors has to be achieved. Furthermore,  the 
study of nonisotropic ds 2 with weighting maps #u,u(g) = #(gu) should be rapidly 
under taken and compared with the preceding results concerning the occurrence of  
a wave function in the definition of ds 2 from an Euclidean space endowed with its 
group of translations [1]. Then, one may think of possible physical speculations for 
the parameterp  ("curvature variable" of dimension (length) -2 7) and for the defini- 
t ion equation of ds ~ (a space-time model would be constructed from a flat model  
mapped  by a scalar "wave function": this model  would be curved by a network of  
connections corresponding to the potential motions gathered in a group G and 
weighted by a map  #u,u (g) ?). In particular, it must  stressed that in the derivation of 
ds 2, the coordinate system is not  merely a simple numerical reference but refers to 
a model  as a rectangular trihedron-clock of the Minkowski space. However, these 
representations are still far too speculative to be detailed. It is just to be reminded 
that  all these developments come from the algebraic analysis of  chemical pairing 
equilibria 

2 M N  ~ M M  + N N ,  

and more precisely from their thermodynamical  constant 

K = [MM].  [NN] 
[MN] 2 

Through a process of mathematical  generalization, it has been "applied" when M 
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a n d  N r e p r e s e n t  " e v e n t s  in a s p a c e - t i m e "  ins tead  o f  m o l e c u l e s  in a f l a sk  . . . .  Bu t  
the  m e a n i n g  o f  the  " p a i r s  M M ,  N N  a n d  M N "  as well  as o f  the  " i n t e r c o n v e r s i o n  

" has  been  los t  . . . .  T h e  super f ic ia l  a p p r o a c h  here  r e p o r t e d  sure ly  dese rves  
f u r t h e r  inves t iga t ions ,  a n d  these  a re  in p rogress .  
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